LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The energy efficiency of interfacial solar desalination

Photo by mbrunacr from unsplash

Abstract Solar-thermal evaporation, a traditional steam generation method for solar desalination, has received numerous attentions in recent years due to the significant increase in efficiency by adopting interfacial evaporation. While… Click to show full abstract

Abstract Solar-thermal evaporation, a traditional steam generation method for solar desalination, has received numerous attentions in recent years due to the significant increase in efficiency by adopting interfacial evaporation. While most of the previous studies focus on improving the evaporation efficiency by materials innovation and system design, the underlying mechanisms of its energy efficiency improvement are less explored, leading to many confusions and misunderstandings. Herein, we investigate the mechanisms of interfacial solar desalination with a detailed heat and mass transfer model. Using this model, we elucidate the advantages of interfacial evaporation over the traditional evaporation method. Furthermore, we clarify the role of tuning the solar flux and surface area on the evaporation efficiency. Moreover, we quantitatively prove that the influence of environmental conditions on evaporation efficiency could not be eliminated by subtracting the dark evaporation rate from evaporation rate under solar. We also find that interfacial evaporation in a solar still does not have the high overall solar desalination efficiency as expected, but further improvement is possible from the system design. Our analysis gains insights to the thermal processes involved in interfacial solar evaporation and offers important perspectives to the further development of interfacial solar desalination technology.

Keywords: interfacial solar; energy; efficiency; evaporation; solar desalination

Journal Title: Applied Energy
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.