LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detection of driver drowsiness using wearable devices: A feasibility study of the proximity sensor.

Photo by ktdphotos from unsplash

BACKGROUND Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In… Click to show full abstract

BACKGROUND Drowsiness is one of the major factors that cause crashes in the transportation industry. Drowsiness detection systems can alert drowsy operators and potentially reduce the risk of crashes. In this study, a Google-Glass-based drowsiness detection system was developed and validated. METHODS The proximity sensor of Google Glass was used to monitor eye blink frequency. A simulated driving study was carried out to validate the system. Driving performance and eye blinks were compared between the two states of alertness and drowsiness while driving. RESULTS Drowsy drivers increased frequency of eye blinks, produced longer braking response time and increased lane deviation, compared to when they were alert. A threshold algorithm for proximity sensor can reliably detect eye blinks and proved the feasibility of using Google Glass to detect operator drowsiness. APPLICATIONS This technology provides a new platform to detect operator drowsiness and has the potential to reduce drowsiness-related crashes in driving and aviation.

Keywords: drowsiness; detection; eye; proximity sensor

Journal Title: Applied ergonomics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.