LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy

Photo from wikipedia

Abstract The spatial porosity and mineral distribution of geological materials strongly affects transport processes in them. X-ray micro computed tomography (X-μCT) has proven to be a powerful tool for characterizing… Click to show full abstract

Abstract The spatial porosity and mineral distribution of geological materials strongly affects transport processes in them. X-ray micro computed tomography (X-μCT) has proven to be a powerful tool for characterizing the spatial mineral distribution of geological samples in 3-D. However, limitations in resolution prevent an accurate characterization of pore space especially for tight crystalline rock samples and 2-D methods such as C-14-polymethylmethacrylate (C-14-PMMA) autoradiography and scanning electron microscopy (SEM) are needed. The spatial porosity and mineral distributions of tight crystalline rock samples from Aspo, Sweden, and Olkiluoto, Finland, were studied here. The X-μCT were used to characterize the spatial distribution of the main minerals in 3-D. Total porosities, fracture porosities, fracture densities and porosity distributions of the samples were determined using the C-14-PMMA autoradiography and characterization of mineral-specific porosities were assisted using chemical staining of rock surfaces. SEM and energy dispersive X-ray spectroscopy (EDS) were used to determine pore apertures and identify the minerals. It was shown that combination of the different imaging techniques creates a powerful tool for the structural characterization of crystalline rock samples. The combination of the results from different methods allowed the construction of spatial porosity, mineral and mineral grain distributions of the samples in 3-D. These spatial distributions enable reactive transport modeling using a more realistic representation of the heterogeneous structure of samples. Furthermore, the realism of the spatial distributions were increased by determinig the densities and porosities of fractures and by the virtual construction heterogeneous mineral distributions of minerals that cannot be separated by X-μCT.

Keywords: spatial porosity; microscopy; porosity mineral; porosity; crystalline rock

Journal Title: Applied Geochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.