LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geochemical identification of potential DNA-hotspots and DNA-infrared fingerprints in lake sediments

Photo from wikipedia

Abstract DNA preserved in sedimentary materials can be used to study past ecosystem changes, such as species' colonization and extinction. It is believed that minerals, especially clay minerals, enhance the… Click to show full abstract

Abstract DNA preserved in sedimentary materials can be used to study past ecosystem changes, such as species' colonization and extinction. It is believed that minerals, especially clay minerals, enhance the preservation of DNA. However, the role of minerals, as well as organic matter, on DNA sorption in heterogeneous sediments is still not clear. In this study, we examined the effect of mineral and organic matter on DNA binding in lake sediments. Bulk and size-fractionated sediments (0–4, 4–16, 16–64, and >64 μm), having different mineral and organic composition, were used to test DNA sorption; similar experiments were also run after the removal of sedimentary organic matter. Additionally, diffuse reflectance infrared spectroscopy (DRIFT) was used to determine the chemical changes caused by DNA sorption and subsequently produce a DNA-infrared (IR) fingerprint. Clay minerals were the main minerals to sorb DNA in the different samples. Moreover, mica promoted DNA sorption in all size fractions, while chlorite promoted DNA sorption in size fractions greater than 16 μm; clay-mineral and organo-mineral complexes caused a preference of certain clay minerals over others. Sedimentary organic matter affected DNA sorption by covering as well as by amplifying potential DNA binding sites, yet DNA sorption did not change significantly. DNA sorption showed IR spectral modifications mainly at ~1640, 1416, and 1231 cm−1. Interestingly, the DNA-IR fingerprint in the heterogeneous sediments was evident by those peaks after spectral subtraction. Finally, we proposed a simple model, based on sediment geochemistry, that can be used to determine potential DNA-hotspots in sediments.

Keywords: dna; dna sorption; potential dna; geochemistry; organic matter

Journal Title: Applied Geochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.