Abstract Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV)… Click to show full abstract
Abstract Images captured by image acquisition systems using photon-counting devices such as astronomical imaging, positron emission tomography and confocal microscopy imaging, are often contaminated by Poisson noise. Total variation (TV) regularization, which is a classic regularization technique in image restoration, is well-known for recovering sharp edges of an image. Since the regularization parameter is important for a good recovery, Chen and Cheng (2012) proposed an effective TV-based Poissonian image deblurring model with a spatially adapted regularization parameter. However, it has drawbacks since the TV regularization produces staircase artifacts. In this paper, in order to remedy the shortcoming of TV of their model, we introduce an extra high-order total variation (HTV) regularization term. Furthermore, to balance the trade-off between edges and the smooth regions in the images, we also incorporate a weighting parameter to discriminate the TV and the HTV penalty. The proposed model is solved by an iterative algorithm under the framework of the well-known alternating direction method of multipliers. Our numerical results demonstrate the effectiveness and efficiency of the proposed method, in terms of signal-to-noise ratio (SNR) and relative error (RelRrr).
               
Click one of the above tabs to view related content.