Abstract A sophisticated computational model of metal inert gas arc welding of aluminium alloys is presented. The arc plasma, the wire electrode and the workpiece are included in the computational… Click to show full abstract
Abstract A sophisticated computational model of metal inert gas arc welding of aluminium alloys is presented. The arc plasma, the wire electrode and the workpiece are included in the computational domain self-consistently. The flow in the arc plasma and in the weld pool are calculated in three dimensions using equations of computational fluid dynamics, modified to take into account plasma effects and coupled to electromagnetic equations. The formation of metal vapour from the wire electrode and workpiece is considered, as is the mixing of the wire electrode alloy with the workpiece alloy in the weld pool. A graphical user interface (GUI) has been developed, and the model runs on standard desktop or laptop computers. The computational model is described, and results are presented for lap-fillet weld geometry. The importance of including the arc in the computational domain is shown. The predictions of the model show good agreement with measurements of weld geometry and weld composition. The GUI is introduced, and the application of the model to predicting the thermal history of the workpiece, which is the input information that is required for predicting important weld properties such as residual stress and distortion and weld microstructure, is discussed. Initial predictions of residual stress and distortion of the workpiece are presented.
               
Click one of the above tabs to view related content.