LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of arbitrarily shaped planar cracks in two-dimensional hexagonal quasicrystals with thermal effects. Part II: Numerical solutions

Photo from archive.org

Abstract The extended displacement discontinuity (EDD) boundary element method is developed to analyze an arbitrarily shaped planar crack in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include… Click to show full abstract

Abstract The extended displacement discontinuity (EDD) boundary element method is developed to analyze an arbitrarily shaped planar crack in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack face. Green's functions for uniformly distributed EDDs over triangular and rectangular elements for 2D hexagonal QCs are derived. Employing the proposed EDD boundary element method, a rectangular crack is analyzed to verify the Green's functions by discretizing the crack with rectangular and triangular elements. Furthermore, the elliptical crack problem for 2D hexagonal QCs is investigated. Normal, tangential, and thermal loads are applied on the crack face, and the numerical results are presented graphically.

Keywords: shaped planar; arbitrarily shaped; two dimensional; hexagonal quasicrystals; dimensional hexagonal; crack

Journal Title: Applied Mathematical Modelling
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.