LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An extended thermal-medium crack model

Photo from wikipedia

Abstract It is important to investigate the effects of heat conduction of crack interior on thermoelastic fields of a cracked material. In this paper, an extended thermal-medium crack model is… Click to show full abstract

Abstract It is important to investigate the effects of heat conduction of crack interior on thermoelastic fields of a cracked material. In this paper, an extended thermal-medium crack model is proposed to address the influences of the thermal conductivity inside an opening crack on the induced thermoelastic fields. Then the problem of a penny-shaped crack in a transversely isotropic material is investigated under applied mechanical and uniform heat flow loadings. Based on the Hankel transform technique, the governing partial differential equations are transformed to ordinary differential equations, then to a system of coupled dual integral equations. The thermoelastic fields around the penny-shaped crack are obtained explicitly by solving the derived dual integral equations. Numerical results are reported to show the influences of the thermal conductivity of crack interior on partial insulation coefficient, temperature change across crack and thermal stress intensity factor. As compared to the known thermal-medium crack model, the proposed one exhibits more applicability.

Keywords: medium crack; thermal medium; crack model; crack

Journal Title: Applied Mathematical Modelling
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.