LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characteristics of Rayleigh wave propagation in orthotropic magneto-thermoelastic half-space: An eigen function expansion method

Photo from wikipedia

Abstract In this article, we theoretically demonstrate the characteristics of Rayleigh surface wave propagation in a homogeneous and orthotropic thermoelastic half-space in the context of three-phase-lag model of generalized thermoelasticity.… Click to show full abstract

Abstract In this article, we theoretically demonstrate the characteristics of Rayleigh surface wave propagation in a homogeneous and orthotropic thermoelastic half-space in the context of three-phase-lag model of generalized thermoelasticity. The influence of magnetic field on Rayleigh wave is analyzed in the framework of two-temperature model. A vector matrix differential equation is formed by employing normal mode analysis, which is then solved by the eigen function expansion method. The frequency equations in closed form are derived and the path of surface particles during Rayleigh wave propagation is found to be elliptical. The results show appreciable differences in phase velocity, attenuation coefficient and specific loss due to the presence of heat-flux phase-lag and is more dominating in comparison with other phase lags.

Keywords: thermoelastic half; characteristics rayleigh; half space; wave propagation; rayleigh wave

Journal Title: Applied Mathematical Modelling
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.