LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CPU-accelerated explicit discontinuous deformation analysis and its application to landslide analysis

Photo by erik_karits from unsplash

Abstract An explicit discontinuous deformation analysis (DDA) that uses an explicit time integration procedure and an explicit calculation of interaction forces between blocks is proposed to overcome the limitations of… Click to show full abstract

Abstract An explicit discontinuous deformation analysis (DDA) that uses an explicit time integration procedure and an explicit calculation of interaction forces between blocks is proposed to overcome the limitations of conventional implicit DDA in simulating large-scale problems. The advantages of the explicit DDA are that (1) the global equilibrium equations are unnecessary to be assembled and the solving for unknowns of every block can be performed independently and conveniently, thereby reducing the computational effort and memory requirement; (2) the open-close iteration process is avoided because the interaction forces between blocks are calculated explicitly according to the initial information at the start of the current time step. The efficient parallel computing is very appropriate for the explicit DDA. To further improve its computational efficiency, the explicit DDA is paralleled based on OpenMP. The accuracy of the explicit DDA is verified through several numerical examples with analytical solutions, experimental data or field observation. Further, the computational efficiency is demonstrated by a series of models and the parallel speedup factor on 6 OpenMP threads is approximately 4.2. Conclusively, the explicit DDA is promising for analyzing blocky systems in large scale.

Keywords: dda; explicit dda; explicit discontinuous; discontinuous deformation; analysis; deformation analysis

Journal Title: Applied Mathematical Modelling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.