Abstract Korteweg-de Vries equation governs the weakly nonlinear long wave whose phase speed reaches a simple maximum of wave with the infinite length in shallow water wave. The exponential-form variable… Click to show full abstract
Abstract Korteweg-de Vries equation governs the weakly nonlinear long wave whose phase speed reaches a simple maximum of wave with the infinite length in shallow water wave. The exponential-form variable separation solution of (2+1)-dimensional Kortweg-de Vries equation is found via the two-function method, and this solution covers many special combined solutions including sinh-cosh,sin-cos,sech-tanh,csch-coth,sec-tan and csc-cot solutions. From the exponential-form solution with choosing suitable functions, inelastic interactions between special multi-valued solitons with two loops such as anti-bell-shaped, anti-peak-shaped semifoldons and anti-foldon are graphically and analytically studied. By the asymptotic analysis, phase shift and its difference during interactions between multi-valued solitons are analytically given.
               
Click one of the above tabs to view related content.