LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stably numerical solving inverse boundary value problem for data assimilation

Photo by campaign_creators from unsplash

Abstract In remote sensing data assimilation, inverse methods are often used to retrieve the boundary conditions from some of the observations in the interior scanning region. Needless to say, the… Click to show full abstract

Abstract In remote sensing data assimilation, inverse methods are often used to retrieve the boundary conditions from some of the observations in the interior scanning region. Needless to say, the inverse boundary value problem (IBVP) is ill-conditioned in general. Ultimately, the data assimilation must include mechanisms that enable them to overcome the numerical instability for solving IBVP. In this paper, we begin by studying the behavior of ill-conditioned IBVP, and find that the condition number varies with the number of the observations and distribution locations of the observations. Next, we define the number of equivalent independent equations as a novel measurement of ill-conditioning of a problem, which can measure the degree of bad conditions. Furthermore, the novel measure can answer how many additional observations are needed to stabilize the retrieving problem, and where additional observations are fixed up. Finally, we illustrate the proposed methodology by applying it to the study of precipitation data assimilation, with a particular emphasis on the analysis of the effect of the number of observations and their distribution locations. The new methodology appears to be particularly efficient in tackling the instability of the retrieving problem in data assimilation.

Keywords: assimilation; methodology; data assimilation; inverse boundary; boundary value; problem

Journal Title: Applied Mathematical Modelling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.