LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows

Photo from wikipedia

Abstract This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection… Click to show full abstract

Abstract This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection method, the velocity field is decoupled from the pressure field in the momentum equation. A Poisson equation, serving as the pressure solver, is obtained by which pressure field is decoupled completely from the velocity field. In particular, an exact projection scheme is deployed to fulfil the requirement of the divergence-free velocity field. The condition of incompressibility is satisfied by iteratively updating the density field till the convergence. The two-equation k–e model is employed to describe the turbulence effects in Newtonian flows. It is shown that the discretised SPH schemes have the feature of both linear and angular momentum conservations. The semi-analytical wall method implements the appropriate integrals to evaluate the boundary contributions to the mass and momentum equations. In comparison to the boundary particle methods, it can greatly enhance the feasibility and efficiency with the complex geometries. The algorithm presented within this paper is applied to several academic test cases for which either analytical results or simulations with other methods are available. The comparisons verify that this scheme is provided with convincing efficiency and extensive applicability.

Keywords: semi analytical; field; method; scheme; sph scheme; projection

Journal Title: Applied Mathematical Modelling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.