LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An equivalent pipe network model for free surface flow in porous media

Photo from wikipedia

Abstract Free surface flow analysis in porous media is challenging in many practical applications with strong non-linearity. An equivalent pipe network model is proposed for the simulation and evaluation of… Click to show full abstract

Abstract Free surface flow analysis in porous media is challenging in many practical applications with strong non-linearity. An equivalent pipe network model is proposed for the simulation and evaluation of free surface flow in porous media. On the basis of representative elementary volume with homogeneous pore-scale patterns, the pore space of the homogeneous isotropic porous media is conceptualized as a collection of capillary tubes. According to Hagen-Poiseulle's law and flux equivalence principle, equivalent hydraulic parameters and unified governing formulations for the pipe network model are deduced. The two-dimensional free surface flow problem is reduced to a one-dimensional problem of pipe networks and a one-dimensional procedure based on the finite element method is then developed by introducing a continuous penalized Heaviside function. The proposed equivalent pipe network model is verified with results from numerical solutions and laboratory-measured data available in the literature, and good agreements are obtained. The proposed equivalent pipe network model is shown to be effective in analyzing the free surface flow in porous media. The numerical results also indicate that the proposed equivalent pipe network model has weak sensitivity of the mesh size and penalty parameters.

Keywords: network model; free surface; pipe network

Journal Title: Applied Mathematical Modelling
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.