LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stable nanoporous Sn/SnO2 composites for efficient electroreduction of CO2 to formate over wide potential range

Photo from wikipedia

Abstract Seeking for an efficient and stable electrocatalyst in a wide potential range is vital for the electrocatalytic reduction of CO2 into high-value added liquid fuels. Herein, the nanoporous Sn/SnO2… Click to show full abstract

Abstract Seeking for an efficient and stable electrocatalyst in a wide potential range is vital for the electrocatalytic reduction of CO2 into high-value added liquid fuels. Herein, the nanoporous Sn/SnO2 (np-Sn/SnO2) composites with high mesoporosity are fabricated through a two-step dealloying strategy. At all the applied potentials, the as-prepared np-Sn/SnO2 composites show obviously higher Faradaic efficiency of formate relative to porous Sn structures. More importantly, the np-Sn/SnO2 composites exhibit high FE HCOO − of >70% at a wide potential range from −0.8 to −1.4 V vs. RHE. In addition, np-Sn/SnO2 composites possess an excellent long-term stability over 58 h at −0.8 V vs. RHE. As compared to the porous Sn structures, the superiority of np-Sn/SnO2 composites toward electroreduction of CO2 to formate could be mainly attributed to their unique mesoporous structures with high-density grain boundaries and large surface area.

Keywords: sno2 composites; sno2; wide potential; co2; potential range

Journal Title: Applied Materials Today
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.