LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluorine saturation on thermally reduced graphene

Photo from wikipedia

Abstract Fluorographene is a wide band-gap insulator with high photoluminescence and hydrophobicity. In the past, fluorographene was considered to be chemically inert similarly to Teflon. However, it has been recently… Click to show full abstract

Abstract Fluorographene is a wide band-gap insulator with high photoluminescence and hydrophobicity. In the past, fluorographene was considered to be chemically inert similarly to Teflon. However, it has been recently reported that fluorographene can undergo several chemical modifications such as nucleophilic or radical substitutions. Fluorinated graphene is typically prepared by top-down synthesis based on sonochemical exfoliation of fluorographite. This method does not allow any control over the graphene fluorination degree. On the other hand, methods based on reaction of fluorine with graphene can be used for synthesis of fluorographene with control of the fluorine content. In this work, we have demonstrated the synthesis of fluorinated graphene with composition in the range from (C1F0.05)n up to (C1F0.6)n at room temperature. A detailed mapping of experimental conditions allows synthesis with tailored fluorine concentration. The influence of fluorination degree on graphene structure, surface functional group composition and electrochemical properties was studied in detail. Moreover, partially fluorinated graphene exhibited enhanced bio-sensing activity towards nucleobases.

Keywords: synthesis; saturation thermally; graphene; fluorinated graphene; fluorine saturation; thermally reduced

Journal Title: Applied Materials Today
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.