LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Layered platinum dichalcogenides (PtS2, PtSe2, PtTe2) for non-enzymatic electrochemical sensor

Photo by dmey503 from unsplash

Abstract Noble metal platinum is highly prestigious for its catalytic and electrocatalytic properties. Their compounds with chalcogens (S, Se, Te) are layered which may give an edge in terms of… Click to show full abstract

Abstract Noble metal platinum is highly prestigious for its catalytic and electrocatalytic properties. Their compounds with chalcogens (S, Se, Te) are layered which may give an edge in terms of structure, in addition to composition. The bonding of platinum dichalcogenides (PtX2) deviates from their extensively studied group 6 counterpart, MoS2. Pt-X is covalent and a strong interlayer interaction exists between the chalcogenides, ensuing a dramatic layer and chalcogen dependence in their electronic properties. Recognising that layered platinum dichalcogenides has yet to be developed for electrochemical sensors, we herein delve into these compounds as we synthesise PtS2, PtSe2 and PtTe2 by heating stoichiometric amounts of their respective elements. Extensive characterisation has been carried out to elucidate structural and chemical properties of the materials. Their electrochemical capabilities in enhancing signal transduction upon detection of H2O2 are compared where PtTe2 performs outstandingly. Furthermore, electrochemical pre-treatment is employed to improve sensitivity. PtTe2-based electrochemical sensor is optimised and developed to detect H2O2 with satisfactory analytical prerequisites of sensitivity and selectivity.

Keywords: ptte2; platinum; pts2 ptse2; platinum dichalcogenides; layered platinum; ptse2 ptte2

Journal Title: Applied Materials Today
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.