LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient discretizations for the EMAC formulation of the incompressible Navier–Stokes equations

Photo from wikipedia

We study discretizations of the incompressible Navier-Stokes equations, written in the newly developed energy-momentum-angular momentum conserving (EMAC) formulation. We consider linearizations of the problem, which at each time step will… Click to show full abstract

We study discretizations of the incompressible Navier-Stokes equations, written in the newly developed energy-momentum-angular momentum conserving (EMAC) formulation. We consider linearizations of the problem, which at each time step will reduce the computational cost, but can alter the conservation properties. We show that a skew-symmetrized linearization delivers the correct balance of (only) energy and that the Newton linearization conserves momentum and angular momentum, but conserves energy only up to the nonlinear residual. Numerical tests show that linearizing with 2 Newton steps at each time step is very effective at preserving all conservation laws at once, and giving accurate answers on long time intervals. The tests also show that the skew-symmetrized linearization is significantly less accurate. The tests also show that the Newton linearization of EMAC finite element formulation compares favorably to other traditionally used finite element formulation of the incompressible Navier-Stokes equations in primitive variables.

Keywords: formulation; stokes equations; incompressible navier; navier stokes; formulation incompressible; emac formulation

Journal Title: Applied Numerical Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.