LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A generalized-Jacobi-function spectral method for space-time fractional reaction-diffusion equations with viscosity terms

Photo by joelfilip from unsplash

In this work, we study a new spectral Petrov-Galerkin approximation of space-time fractional reaction-diffusion equations with viscosity terms built by Riemann-Liouville fractional-order derivatives. The proposed method is reliant on generalized… Click to show full abstract

In this work, we study a new spectral Petrov-Galerkin approximation of space-time fractional reaction-diffusion equations with viscosity terms built by Riemann-Liouville fractional-order derivatives. The proposed method is reliant on generalized Jacobi functions (GJFs) for our problems. The contributions are threefold: First, thanks to the theoretical framework of variational problems, the well-posedness of the problem is proved. Second, new GJF-basis functions are established to fit weak solutions, which take full advantages of the global properties of fractional derivatives. Moreover, the basis functions conclude singular terms, in order to solve our problems with given smooth source term. Finally, we get a numerical analysis of error estimates to depend on GJF-basis functions. Numerical experiments confirm the expected convergence. In addition, they are given to show the effect of the viscosity terms in anomalous diffusion.

Keywords: space time; fractional reaction; diffusion; viscosity terms; time fractional

Journal Title: Applied Numerical Mathematics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.