Abstract The 6 degrees of freedom (DOF) model with a high degree of complexity for capturing ship dynamics is generally able to track the nonlinear and coupling dynamics of ships.… Click to show full abstract
Abstract The 6 degrees of freedom (DOF) model with a high degree of complexity for capturing ship dynamics is generally able to track the nonlinear and coupling dynamics of ships. However, the 6 DOF model makes challenges in estimating model coefficients and designing the model-based control. Therefore, simplified ship dynamic models within allowed accuracy are essential. This paper simplified the 6 DOF nonlinear dynamic model of ships into two decoupled models including the speed model and the steering model through reasonable assumptions. Those models were tested through maneuvering simulations of a container ship with a 4 DOF dynamic model. Support vector machines (SVM) optimized by the artificial bee colony algorithm (ABC) was used to identify parameters of speed and steering models by analyzing the rudder angle, propeller shaft speed, surge and sway velocities, and yaw rate from simulated data extracted from a series of maneuvers made by the container ship. Comparisons with the first order linear and nonlinear Nomoto models show that the simplified nonlinear steering model can capture more complicated dynamics and performs better. Additionally, comparisons among three different parameter identification methods demonstrate similar identification results but the different performance involving the applicability and effectiveness. SVM optimized by ABC is relatively convenient and effective for parameter identification of ship simplified dynamic models.
               
Click one of the above tabs to view related content.