LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Observation of surf zone wave transformation using LiDAR

Photo by scw1217 from unsplash

Abstract The use of LiDAR as an alternative to an array of in-situ instruments for water elevation measurement, specifically in the surf zone, is covered in detail. This paper outlines… Click to show full abstract

Abstract The use of LiDAR as an alternative to an array of in-situ instruments for water elevation measurement, specifically in the surf zone, is covered in detail. This paper outlines the advances in remote sensing of the coastal environment and provide both laboratory and field observations obtained through the application of LIDAR scanning devices. The results of this paper show a good correlation between LiDAR and pressure transducer measurements of water elevation in both a wave flume and within the surf zone (mean coefficient of determination of 0.76 and 0.89 respectively). The water surface reflectivity of the study area needs to be maximised in order for the LiDAR to provide suitable measurements, therefore a method of seeding in the wave flume is described. Points to consider for the setup of the LiDAR instrument in both the laboratory and the field are discussed, as well as the influence that wave parameters such as wave height and wave period have on the quality of results. Free surface elevation data across the spatial and temporal domain can be obtained with LiDAR and used for a wide range of wave analyses.

Keywords: zone wave; wave; wave transformation; observation surf; lidar; surf zone

Journal Title: Applied Ocean Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.