Abstract The shipping of water is a problem that affects naval and offshore structures. Estimating its propagation on the decks of these structures by using analytical methods has been a… Click to show full abstract
Abstract The shipping of water is a problem that affects naval and offshore structures. Estimating its propagation on the decks of these structures by using analytical methods has been a main concern of projects. However, classical approaches disregard the decay tendency of water elevation time series and tend to overestimate the resultant water on deck. This paper is concerned with estimating the evolution of water along the deck of a fixed structure due to shipping water events. An analytical convolution model is proposed to estimate water elevations. The model considers the freeboard exceedance time series and the mean shipping flow velocity as inputs and the frictional effects of the bottom by resistance coefficients, which enables an approximated representation of the water elevation time series over the deck. It was validated with experiments of isolated shipping water events that were generated with the wet dam-break approach. The results obtained with the proposed model captured the experimental results, approximating the peak values and the decay trend of time series. Improvement of the proposed approach over classical models to represent shipping water elevations was demonstrated by comparing the results obtained with those of the dam-break model of Stoker.
               
Click one of the above tabs to view related content.