LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CFD approach to heave damping of spar with heave plates with experimental validation

Photo from wikipedia

Abstract Spar, tension leg platform, and semi-submersibles use heave plates to reduce heave response by increasing heave damping and added mass. Conventional practice is to use a linear damping ratio,… Click to show full abstract

Abstract Spar, tension leg platform, and semi-submersibles use heave plates to reduce heave response by increasing heave damping and added mass. Conventional practice is to use a linear damping ratio, which is typically obtained from free heave decay tests or Computational Fluid Dynamics (CFD) simulations. However, with the addition of heave plates, the system damping becomes nonlinear. Understanding such nonlinear damping behavior of spar with circular heave plates in various configurations could be useful in the design of heave compensation devices. Experimental and numerical investigation on heave damping and added mass of a scaled model of spar with a variety of heave plate configurations have been carried out using free heave decay for a range of initial heave displacements. Applicability of the linear and quadratic damping models have been assessed for all configurations. The effects of parameters such as heave plate diameter, location of heave plate above the keel, and spacing between two plates on damping and added mass have also been studied. Flow fields obtained from numerical simulations are presented, and their implication on damping discussed.

Keywords: damping added; added mass; heave plates; heave damping; spar

Journal Title: Applied Ocean Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.