LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and design of PEM fuel cell stack based on a flow network method

Photo from wikipedia

Abstract Proton exchange membrane fuel cells are usually connected in series to form a fuel cell stack in order to satisfy the power demand of the practical applications. It is… Click to show full abstract

Abstract Proton exchange membrane fuel cells are usually connected in series to form a fuel cell stack in order to satisfy the power demand of the practical applications. It is necessary to investigate the designs of the fuel cell stack to achieve the uniformity of reactant distributions and maximize the performance of the fuel cell stack. In this study, a fuel cell stack model is established based on the flow network method. The pressure and mass distributions of the reactant gas and coolant streams are determined by the flow network method incorporating the cross flow effect and the minor losses. The temperature distributions are also considered, and the individual cell performances in the fuel cell stack are obtained. The optimization of the fuel cell stack is also carried out after the stack model is validated by the experimental data. The flow channels are optimized in terms of the stack net power considering the pumping power losses and the cooling channels are optimized in terms of minimum power consumption for the same amount of cooling effect. Finally, the optimal designs for the fuel cell stack are obtained.

Keywords: fuel cell; cell stack; fuel; flow network; cell

Journal Title: Applied Thermal Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.