LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An experimental investigation on streamwise distance and density ratio effects on double-jet film-cooling

Photo by seemurray from unsplash

Abstract In the present study, flow field and film-cooling effectiveness of several double-jet film-cooling geometries on a flat plate are measured. The streamwise distance varies as s/d = 3.0, 4.0, 5.0, and… Click to show full abstract

Abstract In the present study, flow field and film-cooling effectiveness of several double-jet film-cooling geometries on a flat plate are measured. The streamwise distance varies as s/d = 3.0, 4.0, 5.0, and 6.0, while three spanwise distance conditions (p/d) are considered. The density ratio varies as DR = 1.0, 1.5, and 2.5. Both effects of the streamwise distance and the density ratio are focused. Results show, though the streamwise distance effect is not monotonic for all the cases, a general trend is witnessed when comparing with the baseline of s/d = 3.0. For p/d = 0, with an increased streamwise distance, the lateral coverage widens and the laterally averaged effectiveness rises. However, for p/d = 0.5 and 1.0, increasing the s/d may weaken the interaction between the two jets, and reduce the film coverage and effectiveness. With an increased density ratio, the jet momentum decreases, therefore better attachment and higher film-cooling effectiveness are obtained. However, in most cases, the range of lateral coverage is mainly dominated by the spanwise distance, rather than the streamwise distance or the density ratio. By comparing the area averaged effectiveness, an optimal DJFC configuration (among the geometries in this study) is identified for each operation condition.

Keywords: film; streamwise distance; distance; density ratio

Journal Title: Applied Thermal Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.