LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigation on the performance of closed-loop pulsating heat pipe with surfactant

Photo by a2eorigins from unsplash

Abstract A three-dimensional closed-loop pulsating heat pipe (CLPHP) charged with deionized water and surfactant is numerically investigated in present work. The surfactant used in present work is hexadecyl trimethyl ammonium… Click to show full abstract

Abstract A three-dimensional closed-loop pulsating heat pipe (CLPHP) charged with deionized water and surfactant is numerically investigated in present work. The surfactant used in present work is hexadecyl trimethyl ammonium chloride (CTAC). The start-up performance and heat transfer characteristics of CLPHP with deionized water and surfactant are compared by changing the initial pressure (0.1 MPa, 0.07 MPa, 0.05 MPa) and input heat load (10 W, 20 W, 30 W, 40 W). It’s found that the performance of CLPHP is affected by the initial pressure, surfactant concentration and input heat load jointly. Under the condition of high initial pressure, the performance of CLPHP with surfactant is not as good as that with deionized water. However, under the condition of low initial pressure, especially at higher input heat load, the superiority of the surfactant begins to appear. Compared with the CLPHP with deionized water, the thermal resistance could be decreased by 4.78% when the initial pressure, the input heat load and the surfactant concentration is 0.05 MPa, 40 W and 50 ppm, respectively. It is also found that the CLPHP with 2000 ppm CTAC has a much lower heat transfer performance than that with deionized water under any conditions. Finally, surfactant can improve the wettability of the CLPHP wall, reduce the contact angle, and absolutely prevent the occurrence of “dry-out”.

Keywords: initial pressure; deionized water; clphp; heat; performance

Journal Title: Applied Thermal Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.