LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The efficiency of high-level water collecting cooling tower with the installation of cross wall affect by the evolution of aerodynamic field

Photo from wikipedia

Abstract The aerodynamic field around high-level water collecting natural draft wet cooling tower (HNDWCT), especially that below its special high-level water collecting devices (HWCDs), strongly affects the tower efficiency. Therefore,… Click to show full abstract

Abstract The aerodynamic field around high-level water collecting natural draft wet cooling tower (HNDWCT), especially that below its special high-level water collecting devices (HWCDs), strongly affects the tower efficiency. Therefore, the aerodynamic fields below HWCDs and its evolution characteristics have been studied, then the corresponding impact on the performance of HNDWCT has been clarified in detail. The results demonstrate that the incidence angle and speed of crosswind have great influence on the air flow state below HWCDs, thus the air distribution in heat and mass transfer zones and air mass flow rate through tower, resulting in the degradation of tower cooling performance. To mitigate the adverse effect of crosswind on tower cooling performance, cross wall has been investigated as a means to improve tower air flow structure. It has been found that the cross wall with appropriate porosity is beneficial to increase the tower efficiency. While, the optimum porosity depends on the crosswind speed and its incidence angle, which ranges from approximately 0.33–0.53. Furthermore, the structure of heat and mass transfer zones of HNDWCT, especially the rain zone, are different with that of usual natural draft wet cooling tower (UNDWCT), which causes the different effect of impermeable cross wall.

Keywords: water collecting; level water; wall; cooling tower; cross wall; high level

Journal Title: Applied Thermal Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.