LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microflora that harbor the NRPS gene are responsible for Fusarium wilt disease-suppressive soil

Photo from wikipedia

Abstract Non-ribosomal peptides (NRPs) are one of the largest groups of natural microbial secondary metabolites, which include peptides such as the antibiotics vancomycin and gramicidin, as well as lipopeptides (surfactin,… Click to show full abstract

Abstract Non-ribosomal peptides (NRPs) are one of the largest groups of natural microbial secondary metabolites, which include peptides such as the antibiotics vancomycin and gramicidin, as well as lipopeptides (surfactin, iturin A and bacillomycin). In this study, banana Fusarium wilt disease suppressive and conducive soils were chosen to investigate the role of microbes that harbor the NRPS gene in disease suppression based on the 454-pyrosequencing platform and real-time PCR technique. The results showed that higher abundances and diversity of microbes that harbor the NRPS gene were observed in the suppressive soil samples than in the conducive soil. According to the results of the DNA sequences blastx of NRPS, the main microbial taxa harboring the NRPS gene were identified, and Pseudomonas in Proteobacteria and Streptomyces in Actinobacteria might be remarkably related to Fusarium wilt disease suppression. Furthermore, the Mantel test showed that compared with bacteria community and chemical properties, the microbial community harboring the NRPS gene had a more significant impact on the disease incidences of Fusarium wilt. This study provided non-specific relationships between groups of microbes harboring NRPS genes and Fusarium wilt disease suppression suggesting potential interaction based on correlation evidence, and pointed out a potential mechanism of suppressive soil.

Keywords: fusarium wilt; wilt disease; disease; soil; nrps gene

Journal Title: Applied Soil Ecology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.