LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: Coupling zymography with planar optodes

Photo by robbie36 from unsplash

Abstract Increase of phosphatase activity and rhizosphere acidification are two main physiological mechanisms of phosphorus mobilization by plants. To understand plant P-acquisition strategies, the spatial distribution of phosphatase activity and… Click to show full abstract

Abstract Increase of phosphatase activity and rhizosphere acidification are two main physiological mechanisms of phosphorus mobilization by plants. To understand plant P-acquisition strategies, the spatial distribution of phosphatase activity and pH in the rhizosphere in response to P availability between legumes and cereals and along individual roots were investigated. Zymography of acid and alkaline phosphatase activities visualizing P hydrolysis potential was combined with planar optodes to localize pH changes in maize and lupine rhizosphere. Lupine was more adapted to P-deficiency than maize by increasing phosphatase activity (up to 30%), decreasing pH for 0.8 units in the rhizosphere and having larger hotspot areas compared to P addition. The P deficiency-induced increases of phosphatase activities and acidification were position-specific along taproot of lupine: acid phosphatase was highest while alkaline phosphatase was least at apical parts; pH was 1.7 units lower at the apical than at the basal part. The phosphatase activities and pH along lateral roots of lupine were independent on P availability but had specific distribution patterns: acid phosphatase activity declined from the root tips toward basal part, while the alkaline phosphatase activity was slightly increased from root tips; the pH was highest at the root tips (first 5 mm) and declined thereafter until stabilized after 20 mm. We conclude that 1) lupine is better adapted to P deficiency than maize by a stronger increase of phosphatase activities and facilitation of rhizosphere acidification; 2) The organic P mobilization by phosphatases and mineral P solubilization by acidification along individual roots were dependent on the root zone.

Keywords: acidification; phosphatase activity; lupine; availability; phosphatase

Journal Title: Applied Soil Ecology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.