Abstract Given the conditions of scarce soil water availability, high UV exposure and huge temperature fluctuation, plant growth in desert is extremely limited. In the last three decades, reclaiming desertified… Click to show full abstract
Abstract Given the conditions of scarce soil water availability, high UV exposure and huge temperature fluctuation, plant growth in desert is extremely limited. In the last three decades, reclaiming desertified land for agricultural use via the application of solar greenhouse has been developing in the arid regions, northwestern China. However, the soil microbiome shift driven by the transformation of land use remains largely unexplored. To this end, we examined the diversity and composition of the bacterial community in the vineyard soil at the edge of Tengger desert, using the high-throughput quantitative 16S rRNA gene sequencing. Two types of agricultural managed soils, including those near the plant (PLT) and the others on the fertilization furrow (FTL), were collected. Soils from the open desert land without agricultural practices were used as the control (CON). The results showed that agricultural reclamation significantly (p
               
Click one of the above tabs to view related content.