LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A numerical study of ultraprecision machining of monocrystalline silicon with laser nano-structured diamond tools by atomistic simulation

Abstract Three-dimension molecular dynamics (MD) simulations is employed to investigate the ultraprecision machining of single crystal silicon with structured nanoscale diamond tool fabricated by laser. The advantages and disadvantages of… Click to show full abstract

Abstract Three-dimension molecular dynamics (MD) simulations is employed to investigate the ultraprecision machining of single crystal silicon with structured nanoscale diamond tool fabricated by laser. The advantages and disadvantages of diamond machining using structured tools are discussed in comparison with those of using non-structured tools. The von Mises stress distribution, hydrostatic stress distribution, atomic displacement, stress, the radial distribution function, cutting forces, frictional coefficient, subsurface temperature and potential energy during the nanometric machining process are studied. A theoretical analysis model is also established to investigate the subsurface damage mechanism by analyzing the distribution of residual stress during the nanoscale machining process. The results show that a structured nanoscale tool in machining brittle material silicon causes a smaller hydrostatic stress, a less compressive normal stress σ x x and σ y y , a lower temperature and a smaller cutting force. However, the structured nanoscale tool machining results in smaller chip volume and more beta-silicon phase. Besides, the friction coefficient for tool with V-shape groove is smaller than those for non-structured tools and other structured nanoscale tools. This means that the tool with V-shape groove can reduce the resistance to cutting during the nanoscale machining process. In addition, the results also point out that the potential energy of subsurface atoms and the number of other atoms for pyramid-structured tool are much smaller than those of using non-structured tools and other structured nanoscale tools.

Keywords: ultraprecision machining; tool; stress; diamond; silicon; structured nanoscale

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.