LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ni/Mo2C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation

Photo from archive.org

Abstract The hydrogenation of nitroarenes to value-added aromatic amines requires active and selective catalysts. Due to the good efficiency, economic cost and high earth-abundance, Ni-based nanostructures emerge as the promising… Click to show full abstract

Abstract The hydrogenation of nitroarenes to value-added aromatic amines requires active and selective catalysts. Due to the good efficiency, economic cost and high earth-abundance, Ni-based nanostructures emerge as the promising catalysts, which are however limited by the poor dispersion and unsatisfied durability. Herein, Mo2C nanowires was introduced as a versatile support towards the highly dispersive Ni owing to the strong metal-support interactions on carbide surface, accomplishing the high activity in the hydrogenation of 3-nitrobenzoic acid, 4-nitrobenzoic acid and nitrobenzene. However, the presence of water that promoted the selective hydrogenation unfortunately deactivated Ni species. An effective carbon coating was further introduced to remarkably enhance the stability, protecting active Ni from corrosive H+ and H2O. This work elucidates a feasible way towards efficient and stable catalysts by the introduction of both carbide supports and carbon coating, shedding some light on the development of high-performance catalysts.

Keywords: hydrogenation; nanowires carbon; carbon coated; mo2c nanowires; coated composites

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.