Abstract This work reports a facile method to fabricate transparent self-cleaning fluorocarbon coatings filled by semicrystalline colloidal particles of TiO2-SiO2 composite oxide presenting a particle size ranging from 6 to… Click to show full abstract
Abstract This work reports a facile method to fabricate transparent self-cleaning fluorocarbon coatings filled by semicrystalline colloidal particles of TiO2-SiO2 composite oxide presenting a particle size ranging from 6 to 10 nm. Anatase-TiO2 crystallites were successfully obtained after microwave heating treatment of the TiO2-SiO2 colloidal particles as confirmed by XRD, TEM and FTIR measurements. The fluorocarbon/TiO2-SiO2 composite coatings exhibited a superior hydrophilicity and an improved photocatalytic activity in contrast to the TiO2-filled coatings. In particular, a water contact angle (WCA) value of 4.5° and a decolorization ratio relative to methyl orange as high as 96.0% were achieved for the composite coatings containing 1.5 wt% of TiO2-SiO2 colloidal particles. The results of the anti-soiling experiments indicated that the fluorocarbon/TiO2-SiO2 composite coatings exhibited a prominent self-cleaning performance, while the accelerated aging experiments revealed that the fluorocarbon/TiO2-SiO2 composite coatings were highly stable toward UV irradiation when compared to the TiO2-filled fluorocarbon coatings. These findings indicated that the fluorocarbon/TiO2-SiO2 composite coatings could be a very attractive solution for many practical areas, especially for outdoor applications.
               
Click one of the above tabs to view related content.