LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application

Photo from archive.org

Abstract Rhodium (Rh) nanoparticles have been widely used as potent hydrogenation catalysts. Herein, a new convenient method has been developed to synthesize rhodium nanoparticles, in which carbon dots (CDs) were… Click to show full abstract

Abstract Rhodium (Rh) nanoparticles have been widely used as potent hydrogenation catalysts. Herein, a new convenient method has been developed to synthesize rhodium nanoparticles, in which carbon dots (CDs) were used both as stabilizing and reducing agents. The fluorescent CDs were prepared by microwave-assisted heating method using chitosan as raw material and the presences of hydroxyl and carbonyl on the surface of CDs were supported by FTIR spectra. Subsequently, CDs could directly reduce Rh 3+ to Rh 0 without additional reducing and stabilizing agents by heating Rh 3+ with CDs for 1 h at 120 °C. The resulting Rh nanoparticles have an average size of about 2.8 nm and the Rh/CDs nanoparticles also retain the fluorescent property of CDs. The hydrogenation activities of Rh/CDs nanoparticles were investigated. The results demonstrated that the nanoparticles had highly catalytic activity in the hydrogenation reaction of hydroxyl-terminated polybutadiene (HTPB) and hydroxy-terminated butadiene-acrylonitrile (HTBN). Also, the presence of CDs could improve the fluorescent properties of rubbers after hydrogenation.

Keywords: rhodium; hydrogenation; carbon dots; rhodium carbon; synthesis rhodium; dots nanoparticles

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.