LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing surface integrity and corrosion resistance of laser cladded Cr–Ni alloys by hard turning and low plasticity burnishing

Photo from wikipedia

Abstract In this research, the enhancements of surface integrity and corrosion resistance of the laser cladded parts by combined hard turning with low plasticity burnishing (LPB) were presented by both… Click to show full abstract

Abstract In this research, the enhancements of surface integrity and corrosion resistance of the laser cladded parts by combined hard turning with low plasticity burnishing (LPB) were presented by both potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The investigated results indicated that the corrosion resistance of the laser cladded parts could be improved by combined hard turning with LPB than by sole hard turning. An innovative model was proposed to explain the corrosion mechanism of the laser cladded parts after hybrid machining. Both surface adsorption and passive film were observed to dominate the corrosion resistance of the hybrid machined Cr–Ni alloys by laser cladding. The surface integrity led to the inhomogeneity of passive film, and then altered the corrosion resistance of the machined samples. In terms of the surface integrity factors, residual compressive stresses and surface finish were found to play more important roles in improving the corrosion resistance than the grain refinement and microhardness of the machined surface layer materials did. Based on the research results, anti-corrosion parts with laser cladded alloys could be fabricated by hybrid machining using the combination of hard turning and LPB.

Keywords: hard turning; surface; laser cladded; corrosion; corrosion resistance

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.