Abstract Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are… Click to show full abstract
Abstract Monitoring of humidity is of utmost importance as it is essential part of almost every process in our life. Many commercial humidity sensors based on metal oxide semiconductors are available in the market, but there is still need to synthesize low-cost, fast and highly sensitive humidity sensors with no interference from background environment. The aim of this work was to fabricate the ordered mesoporous un-doped and Co-doped TiO2 (0.1–5 mol% Co) and to analyze its humidity sensing properties at room temperatures. The ordered mesoporous powders with high specific surface area (SSA) were prepared by multicomponent self-assembly procedure and then spray-coated onto the sensor substrates with interdigitated gold electrodes. The sensors exhibited excellent stability and reproducible resistance change under various relative humidity percentages (9–90% RH) with negligible effect of background environment. For instance, the response to 90% RH at room temperature was about five orders of magnitude (∼1.39 × 105) and the response time (Tres) was ∼24 s. The reaction/recovery times of the sensors were compared with commercial humidity sensor to show that the reaction times in this work are not given by the surface reaction of water vapor on the sensor surfaces, rather these are mainly influenced by the experimental setup. The sensor response increased up to 3 mol% Co-contents and then decreased for 5 mol% Co-contents. Based on the experimental results, the surface reaction of humidity is discussed related to specific surface area, average grain size and cobalt contents to understand the humidity sensing mechanism.
               
Click one of the above tabs to view related content.