LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-performance supercapacitors using flexible and freestanding MnOx/carbamide carbon nanofibers

Photo from archive.org

Abstract We demonstrate the fabrication of a MnOx/carbamide carbon nanofiber (CCNF) composite consisting of MnO particles embedded in CCNFs as a highly flexible and freestanding electrode material for supercapacitors. A… Click to show full abstract

Abstract We demonstrate the fabrication of a MnOx/carbamide carbon nanofiber (CCNF) composite consisting of MnO particles embedded in CCNFs as a highly flexible and freestanding electrode material for supercapacitors. A sacrificial polymer component, polymethylmethacrylate, included in the precursor solution, pyrolyzes during heating, resulting in pores in the fibers, some of which are filled by the MnO nanocrystals. Carbamide is added to control the size of the MnOx particles as well as to increase the carbon content of the composite and hence its conductivity. The X-ray diffraction and Raman spectra of the composite show that the MnO particles formed have low crystallinity. Transmission electron microscopy confirms that the MnO particles are distributed very uniformly over the CCNFs. Symmetric supercapacitors constructed using electrodes of this composite exhibit specific capacitances of 498 F∙g−1 at a scan rate of 10 mV∙s−1 and 271 F∙g−1 at a current density of 1 A∙g−1. They also exhibit excellent long-term cycling performance, retaining 93% of their initial capacity after 5000 cycles of galvanostatic charging/discharging.

Keywords: carbamide carbon; mnox carbamide; carbon; mno particles; flexible freestanding; performance

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.