LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorption of phosgene molecule on the transition metal-doped graphene: First principles calculations

Photo from wikipedia

Abstract The adsorption of the phosgene molecule on pristine graphene and transition metal doped (TM = Zr, Mo, Ti, Mn, Fe, Co) graphene is investigated using the first principles method based on… Click to show full abstract

Abstract The adsorption of the phosgene molecule on pristine graphene and transition metal doped (TM = Zr, Mo, Ti, Mn, Fe, Co) graphene is investigated using the first principles method based on density functional theory. The nature of interaction between the phosgene molecule and pristine graphene or transition metal doped graphene (TM-doped graphene) is discovered by geometries, adsorption energies, Mulliken charge distribution, density of states analysis and UV spectrum. Computational results show that the interaction between the phosgene molecule and pristine graphene is a weak physisorption. But doping with transition metals results in stronger chemical adsorption. This is due to the formation of a chemical bond between the metal atom and oxygen atom of phosgene, which makes TM-doped graphene really promising material for phosgene removal. TM-doped graphene also exhibits different electronic properties after adsorbing phosgene, compared with pristine graphene. Furthermore, the calculations reveal that UV spectrum of the TM-doped graphene is modified by the phosgene adsorption. Thus, the significant variations in electronic and optical properties of the TM-doped graphene sheet as interacting with the phosgene can be utilized to detect the phosgene.

Keywords: transition; graphene; doped graphene; phosgene molecule; phosgene

Journal Title: Applied Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.