LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and Characterization of Amphiphilic Copolymer PVDF-g-PMABS and Its Application in Improving Hydrophilicity and Protein Fouling Resistance of PVDF Membrane

Abstract A facile strategy to improve the hydrophilicity and the antifouling properties of poly(vinylidene fluoride) (PVDF) membranes, a functional monomer of 4-methacrylamidobenzenesulfonic acid (MABS), was designed and synthesized through the… Click to show full abstract

Abstract A facile strategy to improve the hydrophilicity and the antifouling properties of poly(vinylidene fluoride) (PVDF) membranes, a functional monomer of 4-methacrylamidobenzenesulfonic acid (MABS), was designed and synthesized through the amidation reaction between 2-methylacryloyl chloride and sulfanilic acid. Utilizing PVDF and the obtained MABS as reaction monomers, a novel amphiphilic copolymer was firstly prepared by radical polymerization method. The resulting PVDF-g-PMABS was used as a hydrophilic additive in the fabrication of PVDF porous membranes via immersion precipitation process. The surface chemical compositions and structure morphologies of as-prepared blend membranes (PVDF-g-PMABS/PVDF) were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Contact angle measurement and cross-flow permeation test were employed to evaluate the hydrophilicity and antifouling properties of the membranes. It was found that the blend membrane with 4 wt.% PVDF-g-PMABS exhibited a noticeable pure water flux (136.34 L m −2  h −1 ) and a remarkable flux recovery ratio (FRR) of 98.60% in comparison with the pristine PVDF membrane (63.37 L m −2  h −1 and 38.67%, respectively). The enhanced performance was attributed to the synergetic effects of the strong hydrogen bonding force and the electrostatic repulsion of sulfonic groups against the protein foulants.

Keywords: hydrophilicity; pvdf pmabs; pvdf; pvdf membrane; amphiphilic copolymer

Journal Title: Applied Surface Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.