LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous Ni 3 (NO 3 ) 2 (OH) 4 nano-sheets for supercapacitors: Facile synthesis and excellent rate performance at high mass loadings

Photo from wikipedia

Abstract For supercapacitors, pores in electrode materials can accelerate chemical reaction kinetics by shortening ion diffusion distances and by enlarging electrolyte/electrode interfaces. This article describes a simple one-step route for… Click to show full abstract

Abstract For supercapacitors, pores in electrode materials can accelerate chemical reaction kinetics by shortening ion diffusion distances and by enlarging electrolyte/electrode interfaces. This article describes a simple one-step route for the preparation of pure-phase porous Ni3(NO3)2(OH)4 nano-sheets by directly heating a mild Ni(NO3)2 and urea solution. During heating, urea decomposed into NH3·H2O, which provided a suitable alkaline environment for the formation of Ni3(NO3)2(OH)4 nano-sheets. Meanwhile, the side product, NH4NO3, created numerous pores as a pore-forming agent. After NH4NO3 removal, the specific surface areas and pore volumes of products were boosted by ∼180-times (from 0.61 to 113.12 m2/g) and ∼90-times (from 3.40 × 10−3 to 3.17 × 10−1 m2/g), respectively. As a cathode material of supercapacitor, the porous Ni3(NO3)2(OH)4 nano-sheets exhibited a high specific capacitance of 1094 F/g at an ultrahigh mass loading of 17.55 mg/cm2, leading to an impressive areal capacitance of 19.2 F/cm2. Furthermore, a Ni3(NO3)2(OH)4 nano-sheet//commercial active carbon asymmetric supercapacitor was constructed and delivered an energy density of 33.2 Wh/Kg at a power density of 190.5 W/Kg, based on the mass of active materials on both electrodes.

Keywords: ni3 no3; porous nano; mass; no3 nano; nano sheets; sheets supercapacitors

Journal Title: Applied Surface Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.