LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route

Photo from wikipedia

Abstract Fe-doped TiO2 thin films are deposited both on the (1 0 0) oriented Si and glass substrates by pulsed laser deposition technique using Fe powder doped TiO2 ceramic target. The structural… Click to show full abstract

Abstract Fe-doped TiO2 thin films are deposited both on the (1 0 0) oriented Si and glass substrates by pulsed laser deposition technique using Fe powder doped TiO2 ceramic target. The structural and optical properties of the film have been studied in detail. The degree of film crystallinity is investigated by X-ray diffraction and confirmed by Raman scattering measurements. The stoichiometry and chemical states of Fe, Ti and O are probed by X-ray photoelectron spectroscopy. The surface morphologies are observed by Scanning electron microscopy. The optical properties are studied by measuring the transmittance and the optical constants, the refractive index and the extinction coefficient. It is found that the substrate temperature is a key factor in determining the thin film structure which further influences the refractive index and the optical band gap of the film. An anatase structure emerges above 300 °C while the rutile structure appears when the substrate temperature is higher than 500 °C. Another result is that Fe exists in the deposited films as Fe3+ and the atomic concentration of Fe in the films is much lower than that in the source target.

Keywords: doped tio2; thin films; tio2 thin; laser deposition; pulsed laser

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.