LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding

Photo from wikipedia

Abstract Electromagnetic radiation pollution has become a serious threat to human health. Wearable materials with high electromagnetic interference (EMI) shielding are highly desirable to protect people far from electromagnetic radiation.… Click to show full abstract

Abstract Electromagnetic radiation pollution has become a serious threat to human health. Wearable materials with high electromagnetic interference (EMI) shielding are highly desirable to protect people far from electromagnetic radiation. In this study, we prepared flexible and wearable materials with ultrahigh EMI shielding via a facile wet electroless deposition of Ag on surface of cotton fibers (Ag@CFs) in non-woven fabrics. High conductivity of ∼3333 S/m and excellent EMI shielding effectiveness (SE) of ∼71 dB were achieved by only costing the wet deposition time of 10 s with 1.61 vol% Ag coating layers, which was far more than the requirement for common commercial EMI SE of 30 dB. The EMI SE of the materials could reach ∼111 dB when the Ag plating time was 3 min. The ultrahigh EMI shielding performance was ascribed to cell-like configuration, which is the abundant interfaces and porous structure in the Ag@CFs non-woven fabrics, and the voids in Ag layers. The electromagnetic radiation, which was reflected at the interfaces and then absorbed in the composites, was hard to escape from the cell-like configurations. Moreover, the prepared Ag@CFs films could also maintain high EMI SE by suffering dozens of washing times or one thousands of bending times. For example, there were only reduction of a few dB in the EMI SE for the non-woven fabrics with the coating time of 3 min after washing 20 times or bending 1000 times. Therefore, this work gave a new strategy for fabricating wearable materials with high-performance EMI shielding.

Keywords: woven fabrics; non woven; electromagnetic interference; emi; emi shielding

Journal Title: Applied Surface Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.