LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: A computational study

Photo from wikipedia

Abstract The capability of pure and Fe-doped silicon carbide nanosheets (Fe-SiCNSs) were scrutinized for adsorbing of ozone, sulfur dioxide and nitrogen dioxide molecules by means of density functional theory calculations.… Click to show full abstract

Abstract The capability of pure and Fe-doped silicon carbide nanosheets (Fe-SiCNSs) were scrutinized for adsorbing of ozone, sulfur dioxide and nitrogen dioxide molecules by means of density functional theory calculations. The molecular electrostatic potential, adsorption energy and charge transfer of these gas molecules on pure and Fe-SiCNSs are studied. The high negative adsorption energy values show that these gas molecules are desirably chemisorbed on the surface of Fe-doped silicon carbide nanosheets, with a more adsorption capability compared to pure SiCNS. The calculation shows that SiCNS is a semiconductor with a band gap of 2.49 eV. After the adsorption of O 3 , SO 2 and NO 2 molecules on the surface of pure and Fe-SiCNSs, the energy gap of the sheets is decreased, especially in adsorbed sulfur dioxide on pure SiCNS with 0.67 eV. This investigation shows that SiC based nanomaterials can be helpful for controlling and capturing of harmful gases.

Keywords: adsorption; silicon carbide; carbide nanosheets; doped silicon; pure doped

Journal Title: Applied Surface Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.