LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Water adsorption and capillary bridge formation on silica micro-particle layers modified with perfluorinated organosilane monolayers

Photo from wikipedia

Abstract Monodisperse micron-sized silica particle monolayers deposited onto plasma-grown SiOx-ultra-thin films have been used as reference systems to investigate wetting, water adsorption and capillary bridge formation as a function of… Click to show full abstract

Abstract Monodisperse micron-sized silica particle monolayers deposited onto plasma-grown SiOx-ultra-thin films have been used as reference systems to investigate wetting, water adsorption and capillary bridge formation as a function of silica surface functionalization. 1H,1H, 2H,2H perfluorooctyltriethoxysil (FOTS) monolayers, have been deposited on the respective surfaces by means of chemical vapor deposition resulting in macroscopically low energy surfaces. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) reflection absorption spectroscopy confirmed the monolayer formation. Water adsorption isotherms were studied by a combination of in-situ FTIR reflection spectroscopy and quartz crystal microbalance (QCM) while macroscopic wetting was analysed by contact angle measurements. The comparative data evaluation indicates that the macroscopic wetting behaviour was changed as expected, however, that water nanodroplets formed both at intrinsic defects of the FOTS monolayer and at the FOTS/SiOx interface. Capillary bridges of liquid water are dominantly formed in the confined particle contact areas and between surface asperities on the particles. The comparison of wetting, adsorption and capillary bridge formation shows that the hydrophobization of porous materials by organosilane monolayers leads to the formation of morphology dependent nanoscopic defects that act as sites for preferential capillary bridge formation.

Keywords: water; formation; capillary bridge; spectroscopy; adsorption; bridge formation

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.