LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel bi-functional SiO2@TiO2/CDs nanocomposite with yolk-shell structure as both efficient SERS substrate and photocatalyst

Photo from wikipedia

Abstract A novel multi-functional yolk-shell SiO2@TiO2/CDs(y-STCs) nanocomposite with interesting structure of SiO2 cores, porous TiO2 shell, and cavities was synthesized by using a simple method. The experimental results indicate that… Click to show full abstract

Abstract A novel multi-functional yolk-shell SiO2@TiO2/CDs(y-STCs) nanocomposite with interesting structure of SiO2 cores, porous TiO2 shell, and cavities was synthesized by using a simple method. The experimental results indicate that the yolk-shell structure and modification of carbon dots (CDs) play important roles in the enhancement of SERS signals and photocatalytic performance. The y-STCs nanocomposite used as the SERS substrate showed excellent efficiency and reproducibility for the detection of rhodamine 6G (R6G). The detection limit of R6G was shown to be as low as 6 × 10−8 M. Furthermore, the fabricated y-STCs nanocomposite utilized as the photocatalytst for the degradation of dinitraphenols (DNP) can greatly shorten reaction time to 120 min compared with previous studies, and the DNP degradation rate could reach 96% under simulated sunlight irradiation. The y-STCs nanospheres also possessed excellent cycle stability for the photocatalytic degradation of DNP. Thus, the bi-functional y-STCs nanocomposite may have potential applications in the detection and photocatalytic degradation of organic pollutants.

Keywords: tio2 cds; shell; structure; sio2 tio2; stcs nanocomposite; yolk shell

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.