LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Construction of Ag@AgCl decorated TiO2 nanorod array film with optimized photoelectrochemical and photocatalytic performance

Photo by seemurray from unsplash

Abstract A novel Ag@AgCl/TNR film photocatalyst was successfully obtained by a facile multistep route. Using a well-organized TiO2 nanorod array (TNR) film as the starting material, Ag nanoparticles were uniformly… Click to show full abstract

Abstract A novel Ag@AgCl/TNR film photocatalyst was successfully obtained by a facile multistep route. Using a well-organized TiO2 nanorod array (TNR) film as the starting material, Ag nanoparticles were uniformly deposited on the TNR film via a photochemical reduction, and in situ oxidation of Ag by FeCl3 solution resulted in the formation of Ag@AgCl/TNR film. The structure, morphology, composition, optical, photocatalytic and photoelectrochemical properties of the obtained films were investigated in detail. The results showed that core-shell Ag@AgCl can effectively promote the transfer of photo-generated electron-hole pairs, suppress their recombination, and enhance the visible light absorption. The Ag@AgCl/TNR film with 60 min oxidation time (S60) showed the highest photocurrent and best transfer performance of interfacial electrons in the electrochemical impedance spectroscopy (EIS) Nyquist plots. For the photodegradation of methyl orange (MO), the S60 exhibited the highest photocatalytic efficiency (90.8%) and good stability under visible light irradiation, which can be comparable and even better than the previous reports. A detailed photocatalytic mechanism was proposed on the basis of the fact that Ag nanoparticles with surface plasma resonance (SPR) can be excited by visible light and this unique structure effectively transfers photo-generated electrons from Ag to TiO2 conduction band, accomplished by the transfer of compensative electrons from a donor (Cl−) to Ag nanoparticles.

Keywords: tnr film; nanorod array; tio2 nanorod; agcl; film

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.