LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-induced periodic surface structures on ZnO thin film for high response NO2 detection

Photo from wikipedia

Femtosecond laser-induced periodic structures (LIPSS) have been processed on ZnO thin film gas sensor devices for nitrogen dioxide (NO2) detection. From the morphology point of view, the nanostructures have been… Click to show full abstract

Femtosecond laser-induced periodic structures (LIPSS) have been processed on ZnO thin film gas sensor devices for nitrogen dioxide (NO2) detection. From the morphology point of view, the nanostructures have been identified as high spatial frequency LIPSS (HSFL) with an average period of 145 nm. Through Raman analysis, a decrease of the typical wurtzite ZnO structure is shown, with a possible increase of defects such as Zn interstitials. The response under NO2 is enhanced if compared with the only-annealed ZnO thin film for concentrations as low as 1 ppm, reaching 1 ppb of detection limit (LOD) for the sensors with LIPSS. The Zn interstitials defects could be the source of the adsorbed NO2 species increasing the sensitivity. Reproducible results have been measured during 11 weeks in a row.

Keywords: induced periodic; zno thin; thin film; laser induced; detection

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.