LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Asymmetry in magnetic behavior caused by superposition of unidirectional and four-fold magnetic anisotropies in CoPt/FeMn bilayers

Photo by ninjason from unsplash

Abstract We investigated magnetic anisotropy and magnetization reversal process in CoPt/FeMn bilayers by four-probe measurements of anisotropic magnetoresistance (AMR) effect. Here, a single crystal-CoPt/polycrystal-FeMn interface has been established, where A1-CoPt… Click to show full abstract

Abstract We investigated magnetic anisotropy and magnetization reversal process in CoPt/FeMn bilayers by four-probe measurements of anisotropic magnetoresistance (AMR) effect. Here, a single crystal-CoPt/polycrystal-FeMn interface has been established, where A1-CoPt layer with four-fold magnetic anisotropy was epitaxially grown on MgO(100) substrate, while the top FeMn layer was 111 textured showing in-plane polycrystalline feature. Due to the noncollinear 3Q AFM spin structure and existence of uncompensated spins in ultrathin FeMn, the magnetic anisotropy of the bilayer can be tuned through interfacial exchange coupling, controlled by field cooling treatment. As a result, it gives rise to asymmetric AMR curves. We show that this asymmetry strongly relies on the direction of induced unidirectional magnetic anisotropy with respect to the easy axis of CoPt layer, leading to a modulated magnetization reversal process.

Keywords: femn bilayers; magnetic anisotropy; copt femn; fold magnetic; four fold

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.