LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tri(Fe/N/F)-doped mesoporous carbons as efficient electrocatalysts for the oxygen reduction reaction

Photo from wikipedia

Abstract In recent years, advanced designs of non-precious electrocatalysts, such as those with transition metals and heteroatoms into iron‑nitrogen-doped mesoporous carbon, have been actively studied to replace precious-metal electrocatalysts for… Click to show full abstract

Abstract In recent years, advanced designs of non-precious electrocatalysts, such as those with transition metals and heteroatoms into iron‑nitrogen-doped mesoporous carbon, have been actively studied to replace precious-metal electrocatalysts for oxygen reduction reaction (ORR), which are used by future energy storage and conversion devices such as metal-air batteries and fuel cells. In the present study, we propose a noble non-precious electrocatalyst through the introduction of fluorine into iron‑nitrogen doped mesoporous carbon. To this end, we synthesized Tri(Fe/N/F)-doped mesoporous carbon nanofiber (MCNF) using electrospinning, the precursor coating method, and carbonization. Tri(Fe/N/F)-doped MCNFs exhibited an improved onset potential of ~0.9 V, the half-wave potential of ~0.82 V, and limiting-current density of −4.76 mA cm−1, with a four-electron pathway. In addition, Tri(Fe/N/F)-doped MCNFs showed remarkable long-term stability and endurance of methanol-crossover. Therefore, Tri(Fe/N/F)-doped MCNFs exhibited improved ORR performance, which could be explained by the increased specific surface area by mesoporous structures and improved oxygen adsorption by the synergy effects by Fe-Nx macrocycles and a high pyridinic- and pyrrolic-N species resulting from F doping.

Keywords: oxygen reduction; doped mesoporous; tri doped; reduction reaction; electrocatalysts oxygen

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.