LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor

Photo from wikipedia

Abstract The effective synthesis of two-dimensional (2D) heterostructures is essential for their use in electronic devices. In this study, by using atomic layer deposition (ALD), 2D transition metal dichalcogenide (TMD)… Click to show full abstract

Abstract The effective synthesis of two-dimensional (2D) heterostructures is essential for their use in electronic devices. In this study, by using atomic layer deposition (ALD), 2D transition metal dichalcogenide (TMD) heterostructures were grown by a halide precursor. This study shows the growth characteristics of the fluoride precursor compared to the chloride precursor used for the synthesis of the TMD on the graphene layer and the other TMD layer. Additionally, a carbonyl precursor was used for comparison with the halide precursor in terms of the thermal stability. From these experiments, the fluoride precursor was adequate for synthesizing on the graphene, however, was inappropriate for the TMD/TMD heterostructure because of its etching characteristic. Meanwhile, the chloride precursor was appropriate for the TMD/TMD heterostructure, even for a low binding energy with the substrate, but was inadequate in forming the TMD/graphene heterostructure, even if the ALD cycle increased. Through our experiments, we show, for the first time, that there exists a suitable halide precursor for a 2D layer for a substrate.

Keywords: heterostructure; precursor; tmd; layer; synthesis two

Journal Title: Applied Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.